

REGIONAL SPECIALISED METEOROLOGICAL CENTRE -TROPICAL CYCLONES, NEW DELHI TROPICAL CYCLONE ADVISORY

DEMS-RSMC SPECIAL TROPICAL CYCLONES NEW DELHI DATED 29.11.2025

FROM: RSMC -TROPICAL CYCLONES, NEW DELHI

TO: STORM WARNING CENTRE, NAYPYI TAW (MYANMAR)

STORM WARNING CENTRE, BANGKOK (THAILAND)

STORM WARNING CENTRE, COLOMBO (SRILANKA)

STORM WARNING CENTRE, DHAKA (BANGLADESH)

STORM WARNING CENTRE, KARACHI (PAKISTAN)

METEOROLOGICAL OFFICE, MALE (MALDIVES)

OMAN METEOROLOGICAL DEPARTMENT.

MUSCAT (THROUGH RTH JEDDAH)

YEMEN METEOROLOGICAL SERVICES.

REPUBLIC OF YEMEN (THROUGH RTH JEDDAH)

NATIONAL CENTRE FOR METEOROLOGY, UAE (THROUGH RTH JEDDAH)

PRESIDENCY OF METEOROLOGY AND ENVIRONMENT,

SAUDI ARABIA (THROUGH RTH JEDDAH)

IRAN METEOROLOGICAL ORGANISATION, (THROUGH RTH JEDDAH)

QATAR METEOROLOGICAL DEPARTMENT (THROUGH RTH JEDDAH)

TROPICAL CYCLONE ADVISORY NO. 23 FOR NORTH INDIAN OCEAN (THE BAY OF BENGAL AND ARABIAN SEA) VALID FOR NEXT 120 HOURS ISSUED AT 2100 UTC OF 28.11.2025 BASED ON 1800 UTC OF 28.11.2025

Cyclonic Storm Ditwah [Pronunciation: Ditwah] over coastal Sri Lanka & adjoining southwest Bay of Bengal

The Cyclonic Storm Ditwah [Pronunciation: Ditwah] over coastal Sri Lanka and adjoining southwest Bay of Bengal moved north-northwestwards with the speed of 7 kmph during past 6 hours and lay centered at 1800 UTC of the 28th November 2025 over the same region, near latitude 9.0°N and longitude 80.8°E, about 70 km northwest of Trincomalee (43418), 170 km northwest of Batticaloa (43436), 240 km south-southeast of Karaikal (43346), 350 km south-southeast of Puducherry (43331) and 450 km south of Chennai (43279).

It is very likely to continue to move north-northwestwards across coastal Sri Lanka & adjoining southwest Bay of Bengal and reach over southwest Bay of Bengal near North Tamil Nadu, Puducherry and adjoining south Andhra Pradesh coasts by 0000 UTC of 30th November.

Forecast track and intensity are given in Table below

Date/Time (UTC)	Position (Lat. °N/	Maximum Category Of Sustained Surface Wind Cyclonic	
	Long. °E)	Speed (Kmph)	Disturbance
28.11.25/1800	9.0/80.8	65-75 gusting to 85	Cyclonic Storm
29.11.25/0000	9.4/80.7	65-75 gusting to 85	Cyclonic Storm
29.11.25/0600	9.8/80.6	70-80 gusting to 90	Cyclonic Storm
29.11.25/1200	10.2/80.5	70-80 gusting to 90	Cyclonic Storm
29.11.25/1800	10.7/80.4	70-80 gusting to 90	Cyclonic Storm
30.11.25/0600	11.8/80.3	60-70 gusting to 80	Cyclonic Storm
30.11.25/1800	12.9/80.4	50-60 gusting to 70	Deep Depression

As per INSAT 3DS at 1800 UTC, the associated scattered to broken low and medium clouds with embedded intense to very intense convection lay over southwest Bay of Bengal, Sri Lanka, Comorin area, Palk Strait, Gulf of Mannar, Kerala and Tamil Nadu (minimum CTT minus 70-90 degree Celsius).

The estimated central pressure is about 1002 hPa. The associated maximum sustained wind speed is about 35 knots gusting upto 45 knots. Sea condition is high over southwest Bay of Bengal and adjoining coastal areas of East Sri Lanka.

Strom surge warning: Storm surge of height about 1.0 to 1.5m above the astronomical tide is likely to inundate low lying areas of north Sri Lanka till 29th/ 0600 UTC.

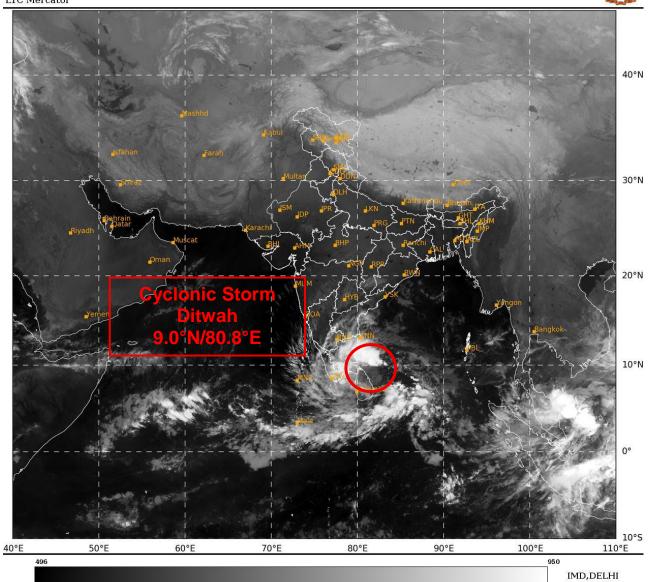
REMARKS:

The guidance from various models indicates that the Madden Julian Oscillation (MJO) index is presently in phase 7 with amplitude more than 1 and is likely to continue in same phase during next 5 days. The sea surface temperature is around 28°C over southwest Bay of Bengal and along & off Sri Lanka, Tamil Nadu & South Andhra Pradesh coast along the forecast track.

The guidance from NCICS model indicates westerly wind anomaly (7-9 mps) along with prevalence of Equatorial Rossby Wave (ERW) and low frequency background wave (LW) over the southern parts of the Bay of Bengal (BoB) and adjoining southeast Arabian Sea (AS) and easterly wind anomaly (3-5 mps) to its north over southwest BoB off Tamil Nadu coast on 29th November. Kelvin wave (KW) is also seen over the region on 29th November. Similar features are likely to continue till 2nd December. Thus, equatorial waves will support enhancement of convective activity in association with cyclonic storm Ditwah over coastal areas of Sri Lanka & adjoining southwest BoB during next 3-4 days.

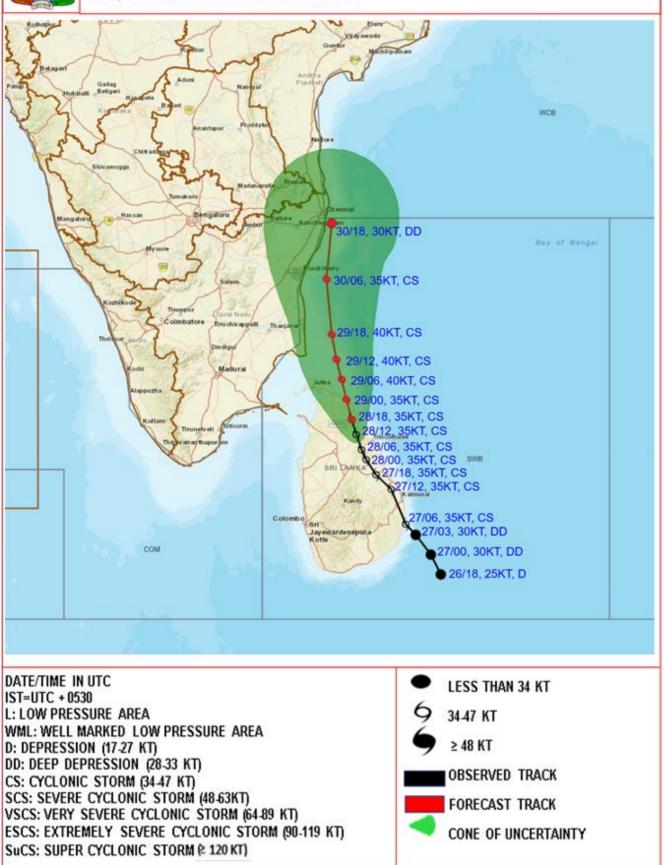
The Low level relative vorticity at 850 hPa is about $150 \times 10^{-6} \, \mathrm{s}^{-1}$ over Sri Lanka and adjoining southwest Bay of Bengal. Vertically the positive vorticity zone is extending up to $200 \, \mathrm{hPa}$, tilting southwestwards with height. Upper-level divergence is around $30 \times 10^{-6} \, \mathrm{s}^{-1}$ to the west of system centre. Low-level convergence has increased and is around $50 \times 10^{-6} \, \mathrm{s}^{-1}$ around the system centre. Mid layer shear is low (5-10 kts) and cyclonic over the system while magnitude of mid-layer shear is favorable while direction is not favorable. The deep layer wind shear of horizontal wind is moderate (15-20 kt) and anti-cyclonic over the system area hence favorable to maintain intensity. However as it moves northwards, it

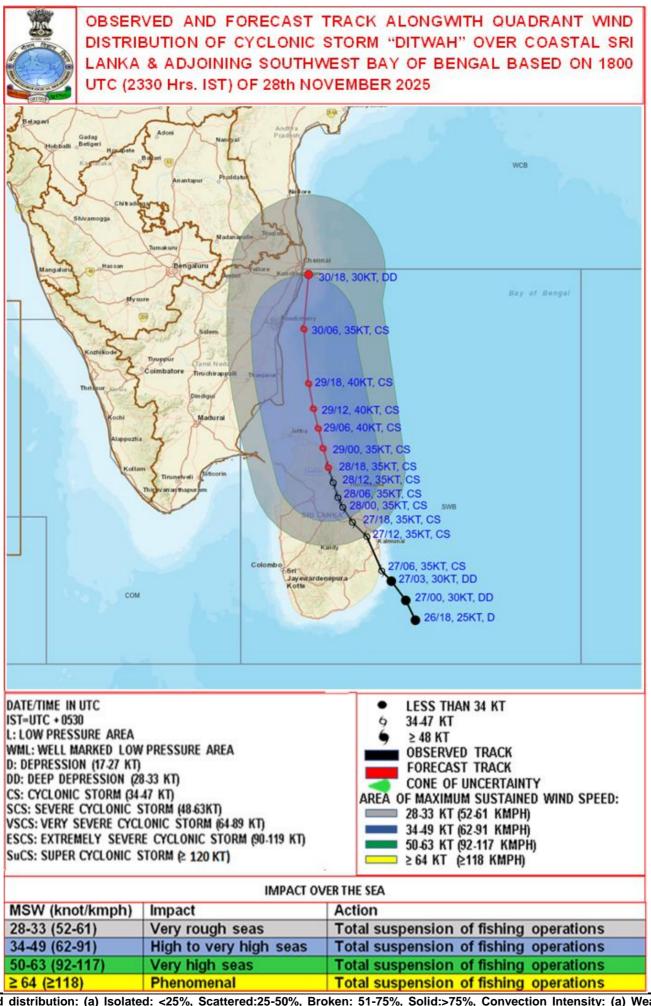
may encounter higher wind shear over southwest BoB and along & off Tamil Nadu coast. Warm air advection is continuously taking place from south and southeast sector towards the core of the system. However cold and dry air from the southern peninsular is touching the northwest sector. As a result with the northwards movement of the system there could be more incursion of dry and cold air. At present the cyclonic storm is interacting with the land over Sri Lanka coasts and land-surface interactions will continue till 0000 UTC of 29th November. However, favorable outflow, warm moist air incursion, support from equatorial waves and favorable thermodynamic features are helping system to maintain its intensity over land. It is likely to intensify marginally, when it emerges into sea. However, as it moves northwards, weakening is likely due to high wind shear, low ocean thermal energy, and cold dry air incursion from northwest sector.


There is good consensus among various models with respect to north-northwestwards movement of the system across costal Sri Lanka towards Tamil Nadu-Andhra Pradesh coasts. However, models are also indicating weakening of the system after 30th November.

- (i) Confidence level in estimation of current location of Cyclonic Storm: High
- (ii) Confidence level in estimation of estimation of current intensity: High
- (iii) Confidence level in forecast track: High
- (iv) Confidence level in forecast intensity: Moderate

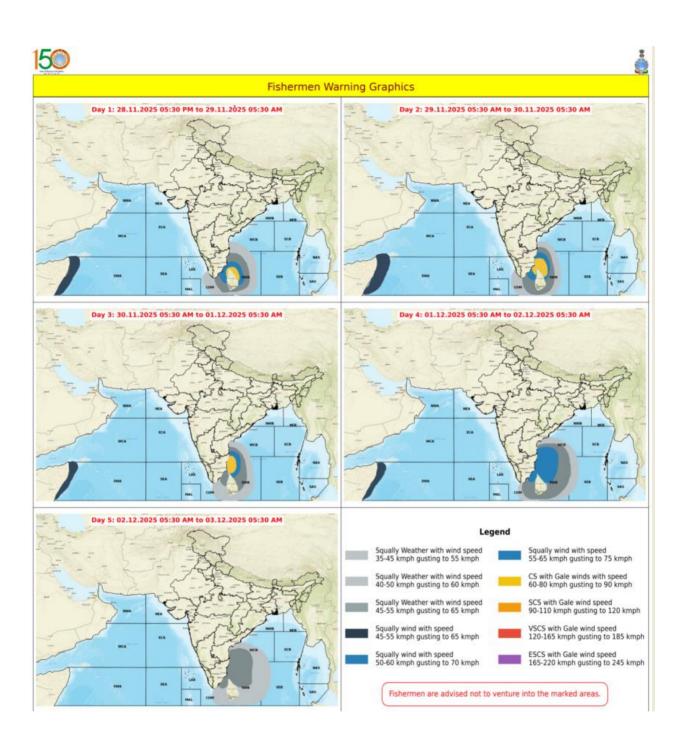
Shibin Balakrishnan, Scientist -D, RSMC, New Delhi


SAT: INSAT-3DR IMG IMG_TIR1 10.8 um L1C Mercator



OBSERVED AND FORECAST TRACK OF CYCLONIC STORM "DITWAH" OVER COASTAL SRI LANKA & ADJOINING SOUTHWEST BAY OF BENGAL BASED ON 1800 UTC (2330 Hrs. IST) OF 28TH NOVEMBER 2025

Cloud distribution: (a) Isolated: <25%, Scattered:25-50%, Broken: 51-75%, Solid:>75%, Convection Intensity: (a) Weak: Cloud Top Temperature(CTT)>-25°C, (b) Moderate: CTT:-25°Cto-40°C, (c) Intense: CTT: -41°Cto -70°C and (d) Very Intense::Less than -70°C Probability of cyclogenesis (formation of depression):NIL:0%, LOW:1-33%, MODERATE:34-66% and HIGH:67-100% This is a guidance Bulletin for WMO/ESCAP Panel Member countries. Visit respective National websites for Country specific Bulletins.


STORM SURGE GRAPHICS

STORM SURGE HEIGHT INFORMATION:

* The below listed surge heights are over and above astronomical tide.

MANDAL/TALUK	DISTRICT	STATE / UNION TERRITORY	NEAREST PLACE OF HABITATION	900	EXPECTED INUNDATION EXTENT (km)
Chengalpattu	Kancheepuram	Tamil Nadu	Muthukadu	0.3-0.5	Upto 0.12
Ponneri	Thiruvallur	Tamil Nadu	Karimanal	0.2-0.4	Unto 0.15

